Q Find the foci, directrices and eccentricity of the ellipse $3 x^{2}+4 y^{2}=12$

Sole Given $\Rightarrow 3 x^{2}+4 y^{2}=12$

$$
\Rightarrow \frac{\beta x^{2}}{124}+\frac{4 y^{2}}{123}=1
$$

$\Rightarrow \frac{x^{4}}{4}+\frac{y^{2}}{3}=1$ which is in

$$
\begin{aligned}
& a^{2}=4, b^{2}=3 \\
& \text { Now. Since } b^{2}=a^{2}\left(1-e^{2}\right) \\
& \quad 3=4\left(1-e^{2}\right) \Rightarrow 1-e^{2}=\frac{3}{4} \\
& \Rightarrow e^{2}=1-\frac{3}{4}=\frac{1}{4} \Rightarrow e= \pm 1 \\
& \text { Also we know }
\end{aligned}
$$

$a e=1 \Rightarrow 30$ the co-ordinates of foci are $(-1 ; 0)$ and $(1,0)$
3. Find Centre and Eccentricity.

$$
\begin{gathered}
2 x^{2}+3 y^{2}-4 x+5 y+4=0 \\
2\left(x^{2}-2 x+1\right)+\left(3 y^{2}+5 y\right)+4=2 \\
\Rightarrow 2(x-1)^{2}+3\left(y^{2}+\frac{5 y}{3} y\right)=2-4 \\
\Rightarrow 2(x-1)^{2}+3\left(y^{2}+2 \cdot \frac{5}{6} y+\frac{25}{36}\right)=-2+\frac{25}{12} \\
\Rightarrow 2(x-1)^{2}+3(y+5 / 6)^{2}=1 / 12 \\
\left.\Rightarrow \frac{(x-1)^{2}}{1 / 24}+\frac{(y+5 / 6)^{2}}{1 / 36}=1-1\right) \\
\frac{5 y}{3}=2 \cdot b \Rightarrow b=\frac{5}{6} \\
b^{2} \cdot=? \frac{25}{36}
\end{gathered}
$$

Put $x-1=X$ and $y+5 / 6=Y$
then $(1) \Rightarrow \frac{x^{2}}{1 / 24}+\frac{y^{2}}{1 / 36}=1$

$$
\begin{gathered}
(-x, y) \\
s \\
\hline
\end{gathered}
$$

Cis centre. $\quad(-1,-5 / 6) \rightarrow S_{1}$
(x, y) centre is $(1,-5 / 6)$

$$
\begin{aligned}
& b^{2}=a^{2}\left(1-e^{2}\right) \\
\Rightarrow & \frac{1}{36}=\frac{1}{24}\left(1-e^{2}\right) \\
\Rightarrow & \left(1-e^{2}\right)=\frac{24}{36}=\frac{2}{3} \\
\Rightarrow & e^{2}=1-\frac{2}{3}=\frac{1}{3} \\
\Rightarrow & e= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

4.4. FORM OF THE CURVE

(i) Since the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ contains only even powers of x and y, the curve (ellipse) is symmetrical with regard to both the x-axis and the y-axis. For if (x, y) be a point on the curve so also are $(-x, y),(x,-y)$ and $(-x,-1)$. Every line through C will thus meet the curve in two points equidistant from C. The point C is therefore called the centre.
(ii) The curve cuts the x-axis in two points $x= \pm a$. This is obtained by putting $y=0$ in the equation of the ellipse. The points A and A_{1}, thus correspond to $x=a$ and $x=-a$ respectively. Similarly the curve cuts the y-axis in two points $y= \pm b$.
(iii) In order to know whether the curve extends beyond $x=a$, we write the equation in the form

$$
y= \pm \frac{b}{d} \sqrt{a^{2}-x^{2}}
$$

If we give to x values greater than a or less than $-a, y$ is imaginary i.e. no part of the curve lies to the right of the point $(a, 0)$ or to the left of the point $(-a, 0)$. Similarly by writing the equation in the form

$$
x= \pm \frac{a}{b} \sqrt{b^{2}-y^{2}}
$$

we observe that no part of the curve lies above $y=b$ or below $y=-b$.
Hence the curve lies entirely within the lines $x= \pm a ; y= \pm b$.
That is, the ellipse is a closed curve as given in the figure of the preceding Ar.

4.5. AN ELLIPSE HAS TWO FOCI AND DIRECTRICES

On the line $C A$ take points S_{1} and X_{1} (see fig. of Art 4.3.) such that $C X_{1}=\frac{a}{e}$ and $C S_{1}=a e$.

Through X_{1} draw $X_{1} M_{1} \perp C A$.

It is not difficult to see that the ellipse which has been described with $S_{\text {as }}$ the focus and $M X$ as the directrix could have been equally described as S_{1} as the focus and $M_{1} X_{1}$ as the directrix; the eccentricity remaining the same.

Thus an ellipse has two foci and two corresponding directrices
The co-ordinates of the two foci (S and S_{1}) of the ellipse are $(-a e, 0)$ and $(a c, 0)$ i.e. $\left(\pm \sqrt{a^{2}-b^{2}}, 0\right)$ and the equation of the corresponding directrices are

$$
x=-\frac{a}{c} \text { and } x=\frac{a}{c}
$$

Cor. : The focal chord $S P=c P M=c \mathrm{IN}=c(O N+O X)$

$$
=c\left(x+\frac{a}{c}\right)=a+c x .
$$

Similarly $S_{1} P=a-e x$.

4.6. AXES AND LATUS RECTUM

Definition-The two lines $A A_{1}$ and $B B_{1}$ with respect to which the curve is symmetrical are called the axes of the ellipse. As $A A_{1}>B B_{1}$ Isince $\left.b^{2}=a^{2}\left(1-e^{2}\right), b<a\right\} A A_{1}$ is called the major axis and $B B_{1}$ the minor axis. The chord through the focus parallel to the directrix is called the latus rectum of the ellipse.
If $L S L$, be the latus rectum, its equation is $x=-a e$.
Now the co-ordinates of the point L are $(-a c, y)$.
Since it lies on the ellipse, we have

$$
\begin{array}{ll}
& \frac{a^{2} e^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1 \\
\Rightarrow & y^{2}=b^{2}\left(1-e^{2}\right)=b^{2} \cdot \frac{b^{2}}{a^{2}} \\
\Rightarrow & y=\frac{b^{2}}{a} \\
\text { i.e. } & L S=\frac{b^{2}}{a} .
\end{array}
$$

Hence the length of the latus rectum

$$
L S L_{1}=\frac{2 b^{2}}{a} .
$$

Diameter-Any chord passing through the centre of the ellipse is called a diameter.

